
What You Need In a Scanner

A scanner consists of one function getNextToken()
that assigns the next token of the program to a
variable that is visible to your parser.

You need to create a token type or class. Tokens can be:

Identifiers: These start with a letter and consist of letters, digits, and
underscores.

Numbers: These are non-negative integers (so we regard “-23” as
two tokens, a minus-token and the number 23. If you want to allow
negative numbers as tokens, you may.

Keywords. These are listed on the last page of the BPL reference
manual: int void string if else while return etc.

Special symbols and punctuaton marks: ; , [] { } () < <= etc.

The end-of-file token that indicates the end of the input file has
been reached.

A Token object should have instance variables that
hold its string value, an integer that describes the
kind of token it is, and an integer for the line
number of the line of the source file where the
token was found.

For the token "kind" I create a bunch of integer
constants: T_IF, T_WHILE, T_SEMICOLON,
T_LPAREN, and so forth. It doesn't matter what
values you assign to these constants as long as the
values are unique. Always refer to the token kinds
by name rather than value.

For example, if line 26 of our source file is
 if (num < 23)
you should find 6 tokens for this line. The data for
these are:
 Kind: T_IF Value: “if” Line: 26
 Kind: T_LPAREN Value: “(“ Line: 26
 Kind: T_ID Value: “num” Line: 26
 Kind: T_LESS Value: “<” Line: 26
 Kind: T_NUM Value: “23” Line: 26
 Kind: T_RPAREN Value: “)” Line: 26

